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Differential projective modules over differential rings

Lourdes Juana and Andy Magidb

aDepartment of Mathematics, Texas Tech University, Lubbock, Texas, USA; bDepartment of Mathematics,
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ABSTRACT
Differential modules over a commutative differential ring which are pro-
jective as ring modules, with differential homomorphisms, form an additive
category. Every projective ring module is shown occurs as the underlying
module of a differential module. Differential modules, projective as ring
modules, are shown to be direct summands of differential modules free as
ring modules; those which are differential direct summands of differential
direct sums of the ring being induced from the subring of constants. Every
differential module finitely generated and projective as a ring module is
shown to have this form after a faithfully flat finitely presented differential
extension of the base.
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1. Introduction

A differential module over a differential ring is a module equipped with an (abelian group) endo-
morphism which satisfies a product rule (with respect to the ring derivation) for scalar multipli-
cation. These have been studied in many places: for example [10], [1, 9]. Our focus here will be
on those which are finitely generated and projective as modules. Not all our results require that
the module be finitely generated, and we indicate where this assumption is not needed. We recall,
however, that when the ring is connected and Noetherian, as is often the case, then Bass has
shown that non-finitely generated projective modules are free [4, Cor. 4.5, p. 31]; when this hap-
pens, our relevant results are immediate.

Later in this introduction we will summarize the results to be obtained in this article. But first
we would like to reflect on the conceptual framework of our investigation.

Just as a module over a commutative ring is a (concrete) representation of the ring as endo-
morphisms of an abelian group, a differential module over a commutative ring is both a repre-
sentation of the ring as endomorphisms of an abelian group and a representation of the
derivation as an inner derivation given by a designated endomorphism of the group which stabil-
izes the image of the ring. This stabilizing condition is strong and can be obscure: up to modifi-
cation by endomorphisms which commute with the image of the ring, there can only be one. So
differential modules as representations may not be as useful as modules are in the non-differential
context. On the other hand, differential modules have proven to be a useful context in which to
examine differential equations. As we will recall below, differential module structures on finitely
generated free modules correspond to (linear, homogeneous, monic, matrix) differential equa-
tions, and complete sets of solutions of such equations correspond to module bases of constants.
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In the case of a differential field, where all modules are free, this connection is covered in [10];
see also [5] and the references therein. In this work, we aim to extend these notions to project-
ive modules.

Let R be a differential commutative ring with derivation D, and let P be a differential R mod-
ule, finitely generated and projective as an R module. The quotient rule for differentiation implies
that localizations of R are differential rings, and in particular that the coordinate rings of the
basic open subsets of SpecðRÞ are differential. We can cover SpecðRÞ with finitely many basic
open sets over each of which P is free as an R module. Thus on these open sets the differential
structure is given by a differential equation which may or may not have a complete set of solu-
tions. If they all do, and they are compatible, then P is extended from a module over the con-
stants of R. We show that this happens if and only if P is a differential direct summand of a
differential direct sum of copies of R.

Just as in the field case, one can force a differential module whose underlying R module is free
of rank n to have a complete set of solutions by passing to a differential ring extension S � R
which is a faithfully flat finitely presented augmented R algebra (in fact as an algebra
S ¼ R� Z½GLn�). We show that every differential projective module is a differential direct sum-
mand of a differential module whose underlying R module is free and then use this to show that
every differential finitely generated projective module has a complete set of solutions in a faith-
fully flat finitely generated extension of the above type. That differential projective modules are
such direct summands follows from our result that every projective R module carries a differential
structure. Actually we prove this twice: first with a conceptual argument, and then, for the case
when the projective module is given explicitly by an idempotent matrix, by a construct-
ive formula.

The classification of differential projective modules, like the case of ordinary projective mod-
ules, is a question of K theory, which we describe formally. For the special case of rank one pro-
jective modules, this description presents the differential Picard group in terms of PicðRÞ and a
quotient of the additive group of R.

As a general reference to K theory of projective modules we cite [3].
Previous work of the authors [6] and the second author [9] have stressed the case where R is a

field, or more generally a simple differential ring. Under the assumption of simplicity, every R
finitely generated differential module is R projective [1, Theorem 2.2.1] (or see the exposition in
[9, Theorem 5]). Here we consider when R is not necessarily a simple differential ring. Two
important types of examples which we will use include the case that R ¼ C½x1; :::; xn�f is the
coordinate ring of an affine open subset of complex affine space, with a suitable derivation, or
that R ¼ OðCÞ is the ring of entire functions on the complex plane. This latter object has some
properties which may not be as familiar as the former, so we will observe them below.

2. Basics

Let R be a commutative ring with derivation D. The ring of twisted differential polynomials over
R, denoted R½X;D� is the R module R½X� (ordinary R polynomials in one variable X) with associa-
tive, distributive multiplication determined by the rule Xa ¼ aX þ DðaÞ for a 2 R: By construc-
tion, R is a subring of R½X;D�; although R is not central in R½X;D� unless D is trivial (D¼ 0),
and hence R½X;D� is not usually an R algebra.

A left module over R½X;D� is called a differential R module. It is straightforward to verify that
a differential R module M is an R module with an additive endomorphism DM given by
DMðmÞ ¼ Xm which obeys the formula DMðamÞ ¼ DðaÞmþ aDMðmÞ for a 2 R and m 2 M; and
conversely. A homomorphism of differential R modules is called a differential homomorphism. A
differential homomorphism f : M ! N between differential R modules is seen to be an R module
homomorphism that satisfies f ðDMðmÞÞ ¼ DNðf ðmÞÞ for m 2 M; and conversely. The category of
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differential R modules, being the category of left modules over the ring R½X;D�; is an abelian cat-
egory. A projective object in this category is, by definition, a projective differential module. A
constant of a differential ring or module is an element of derivative zero. The constants of R
form a subring denoted RD; the constants of a differential R module M form an RD submodule of
M denoted MD. For a differential module M, there is a map R�RDMD ! M: If this map is surjec-
tive, we say that M is constantly generated. If this map is an isomorphism, we say that M is
induced [from constants]. In Example 3, we show that constantly generated need not be induced.
Suppose that M is finitely generated free as an R module and that it has an R module basis
fx1; :::; xng consisting of constants. Then it follows that for r1; :::; rn 2 R that DðP rixiÞ ¼P

DðriÞxi from which it is easy to conclude that fx1; :::; xng is an RD basis of MD and hence that
M is induced.

We fix the above notations.
A differential module may be finitely generated as an R module. For example, this is true of R

itself, using D for the endomorphism DR. However this is not true for (nonzero) projective differ-
ential modules.

Proposition 1. Let P be a projective left R½X;D� module which is finitely generated as an R module.
Then P¼ 0

Proof. Since P is R finitely generated, it is R½X;D� finitely generated, which means that there is a
differential surjection R½X;D�ðnÞ ! P: Since P is projective, this surjection differentially splits and
P can be regarded as a differential submodule of R½X;D�ðnÞ: The projections pi : R½X;D�ðnÞ !
R½X;D� are all differential. If P 6¼ 0 then for some i piðPÞ is a nonzero R finitely generated differ-
ential submodule of R½X;D�: Suppose g1; :::; gk generate piðPÞ as an R module. Then any element
g 2 piðPÞ is of the form

Pk
i¼1 rigi: In particular, its degree in X is bounded. Let f 2 piðPÞ be a

nonzero element with highest degree term amXm where am 6¼ 0: Since XamXm ¼ amXmþ1 þ
DðamÞXm; the elements Xf ;X2f ;X3f ; ::: all lie in piðPÞ and have strictly increasing degrees. This
contradicts boundedness of degrees, and hence we conclude that P¼ 0. w

Proposition 1 shows that there will be no interesting projective differential modules that are
finitely generated as R modules. We could go on to consider all differential modules which are
finitely generated as R modules; for the reasons explained in the Introduction, the class of interest
in this work is the differential R modules which are finitely generated and projective as R mod-
ules. We single out this terminology, which we have already been using, with a formal definition.

Definition 1. A differential R module which is finitely generated and projective as an R module
is said to be differential finitely generated projective.

For example, R is a differential finitely generated projective R module. More generally RðnÞ

with the endomorphism D0ððr1; :::; rnÞÞ ¼ ðDðr1Þ; :::;DðrnÞÞ is a differential finitely generated pro-
jective R module.

If M is any R module, and D1 and D2 are additive endomorphisms of M which make M a dif-
ferential R module, then it is elementary to check that D1�D2 is an R module endomorphism of
M. Conversely, if T is any R module endomorphism of M then the additive endomorphism D1 þ
T is a differential R module structure on M.

We apply this observation to differential R modules which are finitely generated free as R
modules, say of rank n: let P be any differential finitely generated projective module which is free
as an R module, and suppose that fx1; :::; xng is an R module basis of P. We use the basis to
identify P with RðnÞ; and use DP for the differential structure on both. Thus DP ¼ D0 þ T where
T is an R module endomorphism. T is given by multiplication by a matrix A, so we conclude
that DPððr1; :::; rnÞÞ ¼ D0ðr1; :::; rnÞ þ ðr1; :::; rnÞA: Conversely, we know that for any n� n matrix
A, this formula defines a differential R module structure on RðnÞ: For future reference, we will
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denote this differential module P(A) and denote its differential structure DA (rather than DPðAÞ).
Note that for P(0) the notation D0 is now unambiguous.

For use below, we now record when modules P(A) and P(B) are differentially isomorphic.
Occasionally it will be convenient to use another notation for D0: ð�Þ0 applied to a tuple (or

matrix) means to apply D to each entry. (So in the above D0ððr1; :::; rnÞÞ ¼ ðr1; :::; rnÞ0:)

Proposition 2. Let A and B be n� n matrices over R. Then P(A) and P(B) are isomorphic differen-
tial modules if and only if there is an invertible n� n matrix C over R such that C0 ¼ AC�CB:

Proof. Let P(A) and P(B) be isomorphic as differential modules and suppose the isomorphism is
given by the invertible matrix C. Then for all x 2 PðAÞ DBðxCÞ ¼ DAðxÞC: Expanding both sides
and canceling the common term x0C from both sides gives xC0 þ xCB ¼ xAC for all x, so that C
satisfies the equation in the statement of the Proposition. Conversely, by reversing the above cal-
culations we see that multiplication by any C satisfying the equation is a differential
isomorphism. w

We will need the case n¼ 1 of Proposition 2 so we record it as a corollary.

Corollary 1. Let a and b be elements of R. Then P(a) and P(b) are isomorphic differential modules
if and only if there is a unit u 2 R such that u0u�1 ¼ a�b

The expression u0u�1 that appears in Corollary 1 is called the logarithmic derivative of u and
usually denoted dlogðuÞ: It has the property that dlogðuvÞ ¼ dlogðuÞ þ dlogðvÞ:

Now let m 2 PðAÞ: It will be a constant provided that DAðmÞ ¼ m0 þmA ¼ 0: In other words,
m is a solution of the differential equation y0 ¼ �yA: Here y is thought of as a 1� n matrix.

If B is any r� n matrix then DAðmBÞ ¼ ðmBÞ0 þmBA; and ðmBÞ0 ¼ m0BþmB0: If we apply
this where m ranges over the standard basis tuples, then the rows of B are constants provided
B0 þ BA is the zero matrix. In other words B is a solution of the matrix differential equation
Y 0 ¼ �YA; here Y is an r� n matrix. Thus P(A) will have a basis of constants provided the
matrix differential equation Y 0 ¼ �YA for Y n� n has an invertible solution. Having an
invertible solution Z to the matrix differential equation Y 0 ¼ �AY in the classical cases where
R is a differential field is known as having a complete set of solutions to the matrix differen-
tial equation.

There may not be such a matrix Z over R. However we can always adjoin elements to R to
obtain such a matrix: let zij, 1 � i; j � n be inderminates over R and form the polynomial ring
R½zij� :¼ R½z1;1; :::zn;n�: Define a derivation on this polynomial ring so that if Z is the n� n matrix
over it with i, j entry zij then Z0 ¼ �ZA: By the above, the rows of Z are constants in
R½zij��RPðAÞ: If we further make Z be invertible by localizing R½zij� at the determinant d ¼
detðZÞ then the rows of Z become a basis of constants of R½zij�½d�1��RPðAÞ: (This construction is
the same as the first steps of the construction of the Picard–Vessiot ring extension for the module
P(A); see [10] and [8].) For latter reference we denote this differential ring S(A). Note that, by
construction, SðAÞ�RPðAÞ has a basis of constants.

Note that S(A), which as a ring is R� Z½GLn� is faithfully flat and finitely generated as an
R algebra and there is an R algebra augmentation � : SðAÞ ! R determined by Z 7! In (which
is not a differential augmentation, of course). And if R happens to be the coordinate ring of
an affine open subset of affine space, so is S(A), although the ambient affine spaces are not
the same.

Recall that we have termed a differential finitely generated projective module M induced pro-
vided R�RDMD ! M is an isomorphism and have remarked that a differential finitely generated
projective R module which has a basis of constants is induced. We have the following character-
ization of induced modules:
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Theorem 1. Let M be a differential finitely generated projective R module. Then M is a direct sum-
mand of a finite number of copies of the differential module R if and only if there exists a finitely
generated projective RD module M0 and a differential isomorphism R�RDM0 ffi M:

Proof. Let M and N be differential modules with M�N ffi RðnÞ: Passing to constants, we have
MD�ND ffi ðRDÞðnÞ which implies that MD is a finitely generated projective RD module. There are
differential maps R�RDMD ! M and R�RDND ! N: Their direct sum is a map
ðR�RDMDÞ�ðR�RDNDÞ ! M�N which is the isomorphism R�RDðRDÞðnÞ ! RðnÞ: It follows that
both the summand maps are isomorphisms, and in particular R�RDMD ! M is an isomorphism.

Conversely, if M0 is a finitely generated projective RD module, then there is a finitely generated
projective RD module N0 such that M0�N0 ffi ðRDÞðmÞ for some m. Then tensoring with R over
RD shows that ðR�RDM0Þ�ðR�RDN0Þ ffi R�RDðRDÞðnÞ ¼ RðnÞ: w

We note that the proof of Theorem 1 applies when we replace n by an arbitrary cardinal in
the direct implication and similarly drop the restriction to finite generation (and replace m by
whatever cardinal is necessary) in the converse.

The first half of the proof actually shows that a differential direct summand (a differential sub-
module of a differential module which is a direct summand and has a complement which is dif-
ferential) of an induced module is induced, applied to the special case where the ambient module
is a finite number of copies of the differential module R.

Theorem 1 suggests that we consider the functor R�RDð�Þ; which takes finitely generated project-
ive RD modules to differential finitely generated projective R modules: Theorem 1 says what the
image is on objects. For later use, we record the following property of this functor.

Lemma 1. Let M0 be a finitely generated projective RD module. Then M0 ! ðR�RDM0ÞD by
m 7! 1�m is a bijection.

Proof. The map M0 ! ðR�RDM0ÞD is natural in M0 and additive. So, as usual with finitely gener-
ated projective modules, it suffices to prove bijection for the case M0 ¼ RD; where it is trivial
since R�RDRD ¼ R: w

In the special case that all differential finitely generated projective R modules are direct sums
of copies of R differentially, Theorem 1 shows that all such modules are induced.

Corollary 2. Assume that all differential finitely generated projective R modules are direct sum-
mands of copies of R. Then all differential finitely generated projective R modules are of the form
R�RDM0 where M0 is a finitely generated projective RD module.

Theorem 1 can be used to construct examples of differential finitely generated projective modules.
If T is any commutative ring, and R ¼ T½z; z�1� is the ring of Laurent polynomials over T, then R
is a differential ring with derivation determined by D(z) ¼ z and D(T) ¼ 0. There is a ring
homomorphism R ! T given by z 7! 1: If T is an integral domain of characteristic 0, then RD ¼
T: Thus differential finitely generated projective R modules which are direct summands of finitely
many copies of R are all of the form R�TP for some finitely generated projective T module P. By
varying T we can obtain examples of various types.

3. All projectives are differential

Next, we see that every projective R module is the underlying module of a differential project-
ive module.
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Theorem 2. Let M be a projective R module. Then there is an additive endomorphism DM : M !
M that makes M a differential R module.

Proof. Let R½e� denote the ring of dual numbers over R (The quotient R½t�=Rt2 of the polynomial
ring with e ¼ t þ Rt2). The derivation D of R defines a ring homomorphism U : R ! R½e� by the
formula r 7! r þ DðrÞe: Note that U makes R½e� an R algebra via U: Consider the R½e� module
R½e��UM; which we denote M½e�; which is an R module via U: The projection WM : M½e� ! M
by mþ ne 7!m satisfies UðrÞðmþ n�Þ ¼ ðr þ DðrÞeÞðmþ neÞ ¼ rmþ ðrnþ DðrÞmÞe 7! rm and
hence is R linear. As M is a projective R module, there is an R module homomorphism wM :
M ! M½e� such that WMðwMðmÞÞ ¼ m for all m 2 M: Note that if wMðmÞ ¼ aþ be then m ¼
WMðwMðmÞÞ ¼ WMðaþ beÞ ¼ a: We define DM by wMðmÞ ¼ mþ DMðmÞe: Since wM is an R
homomorphism, wMðrmÞ ¼ UðrÞwMðmÞ; so rmþ DMðrmÞe ¼ ðr þ DðrÞeÞðmþ DMðmÞeÞ which
implies that DMðrmÞ ¼ DðrÞmþ rDMðmÞ: Similarly, since wMðmþ nÞ ¼ wMðmÞ þ
wMðnÞ;DMðmþ nÞ ¼ DMðmÞ þ DMðnÞ: Thus DM is the desired additive endomorphism. w

We note that if the projective module M in Theorem 2 is finitely generated then DM makes M
a differential finitely generated projective module.

As noted in the introduction, we also have a constructive version of Theorem 2 for finitely
generated projective modules which are presented as the image of an idempotent matrix. Every
finitely generated projective module may be so given: let M be a finitely generated projective R
module, and let p : RðnÞ ! M be an R module surjection. Since M is projective, there is an R
module splitting homomorphism q : M ! RðnÞ such that pq ¼ idM: Let e ¼ qp 2 EndRðRðnÞÞ:
Then e2 ¼ e so e is idempotent and the image of e is isomorphic to M as an R module. We iden-
tify EndRðRðnÞÞ with the matrix ring MnðRÞ so that e becomes an idempotent matrix. Moreover,
MnðRÞ is a non–commutative differential ring via the derivation ð�Þ0:

We have the following lemma about idempotents in non–commutative differential rings:

Lemma 2 Let A be a non–commutative differential ring with derivation ð�Þd and let E be an idem-
potent of A. Then DðxÞ ¼ xd þ ½½E;Ed�; x� for x 2 A is a derivation of A such that D(E) ¼ 0 and
DðxÞ ¼ xd if x is in the center of A:

Proof. The only conclusion that needs proof is that DðEÞ ¼ Ed þ ½½E; Ed�;E� ¼ 0: To see this, we
begin by differentiating E ¼ E2 which implies that Ed ¼ EEd þ EdE: Multiply this equation on
both sides by E and we have EEdE ¼ EEdEþ EEdE which implies that EEdE ¼ 0: Expanding
½½E;Ed�;E� we have ½EEd�EdE; E� ¼ EEdE�EdE�EEd þ EEdE ¼ �ðEEd þ EdEÞ ¼ �Ed w

Lemma 2 asserts that Ed þ ½½E;Ed�; E� ¼ 0 or Ed ¼ ½E; ½E;Ed�: We apply this to A ¼ MnðRÞ with
ð�Þd ¼ ð�Þ0 and E¼ e. We use the matrix A ¼ ½e; e0� to make RðnÞ the differential module P(A).
Then for x 2 PðAÞ DðxeÞ ¼ ðxeÞ0 þ xeA ¼ x0eþ xe0 þ xe½e; e0� while DðxÞe ¼ ðx0 þ xAÞe ¼
x0eþ x½e; e0�e: Thus DðxeÞ�DðxÞe ¼ xe0 þ xðe½e; e0��½e; e0�e ¼ xðe0�½e; ½e; e0�Þ ¼ 0 It follows that e
is an (idempotent) differential endomorphism of P(A) and hence that its image (namely M) is a
differential direct summand of P(A) (with complementary differential summand the image of
1�e). We summarize:

Theorem 3. Let M be a finitely generated projective R module and let e be an idempotent n� n
matrix over R such that the image of e is isomorphic to M. Then e is an idempotent differential
endomorphism of Pð½e; e0�Þ and hence M is a differential direct summand of Pð½e; e0�Þ. Explicitly,
for xe 2 M;DMðxeÞ ¼ ðxeÞ0 þ xe½e; e0�:

Theorem 2 implies that the additive (and multiplicative) trivialization theorems for projective
modules apply to differential projective modules.
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Corollary 3. Let M be a differential finitely generated projective R module. Then there is a differen-
tial finitely generated projective R module N such that M�N as an R module is free of finite rank.

Proof. There is a finitely generated projective R module N such that the R module M�N is free
of finite rank. By Theorem 2, there is a DN that makes N a differential module. Then M�N is a
differential module using the differential structures of M and N. w

If in Corollary 3 we drop the requirement that M be finitely generated, the proof still applies,
except without the conclusion that N or M�N are finitely generated.

Corollary 4. Let P be a differential finitely generated projective R module, and assume P is faith-
fully projective as an R module. Then there is a differential finitely generated projective R module
Q such that P�RQ as an R module is free of finite rank.

Proof. By Bass’s Theorem [2, Proposition 4.6, p 476], there is a finitely generated projective R
module Q such that the R module P�RQ is free of finite rank. By Theorem 2, there is a DQ that
makes Q a differential module. Then P�RQ is a differential module using the differential struc-
tures of P and Q. w

Corollary 3 shows that every differential finitely projective module M appears as a summand
of a differential finitely generated projective module which is free as an R module, that is, of the
form P(A). If this latter module is constantly generated, then Theorem 1 shows that M is induced
from RD. Of course, P(A) may not be constantly generated. However, we have shown that there
is a differential R algebra S(A) such that SðAÞ�RPðAÞ is constantly generated, which implies that
SðAÞ�RM is a differential direct summand of a constantly generated module.

Thus we then have the following theorem:

Theorem 4. Let M be a differential finitely generated projective R module. Then there is a differen-
tial R algebra S, finitely generated, faithfully flat, and augmented as an R algebra, such that
S�RM ffi S�SDM0 where M0 is a finitely generated projective SD module.

Proof. By Corollary 3 M is a differential direct summand of a differential module P which is
finitely generated and free as an R module, say of rank n. If a basis is chosen for P, then there is
a matrix A 2 MnðRÞ such that P ffi PðAÞ: Thus M can be considered as a differential direct sum-
mand of P(A). Let S ¼ SðAÞ: Since S�RPðAÞ is a direct sum of copies of S as a differential mod-
ule, and S�RM is a direct summand of S�RPðAÞ; by Theorem 1 S�RM ffi S�SDM0 for some
finitely generated projective SD module M0. w

Because, in the notation of Theorem 4, S is faithfully flat over R, M can be recovered from
S�RM plus the appropriate descent data. This applies to M as a differential module as the stand-
ard descent data is differential. Once we have passed to S, then the extension of M becomes
induced (tensored-up) from the constants of S. Thus differential finitely generated projective R
modules are obtained from descent of induced–from–constants modules over differential exten-
sions of R which are faithfully flat finitely generated augmented R algebras. We can further
restrict S to be of the type S(A), which means the extensions in question are indexed by n� n
matrices over R (for all n).

4. K–theory

The class of differential finitely generated projective R modules is closed under (R module) direct
sum. Direct sum can be used to make the set of isomorphism classes of differential finitely gener-
ated projective modules into a monoid: If ½�� denotes differential isomorphism class then ½M� þ
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½N� :¼ ½M�N�: This is an associative and commutative operation, with identity ½0�: Following the
usual conventions, we denote the most general group to which this monoid maps Kdiff

0 ðRÞ; which
we call the differential K group of differential projective modules. We denote the image of the iso-
morphism class ½M� in Kdiff

0 ðRÞ by the same symbol, ½M�: If S is a differential R algebra there is a
homomorphism Kdiff

0 ðRÞ ! Kdiff
0 ðSÞ induced from tensoring over R with S. Any element of

Kdiff
0 ðRÞ can be written ½M��½N�; where M and N are differential finitely generated projective

modules. By Corollary 3, we can choose a P such that N�P is free as an R module. Since
½M��½N� ¼ ½M�P��½N�P� we can always assume that N is R free, so that any element of
Kdiff
0 ðRÞ is of the form ½M��½PðAÞ� for some matrix A. If P and Q are differential finitely gener-

ated projective modules then ½P� ¼ ½Q� in Kdiff
0 ðRÞ if and only if there is a differential finitely gen-

erated projective module M such that P�M ffi Q�M: By adding an appropriate differential
module to M we can, by Corollary 3 again, assume that M is R free,

The group Kdiff
0 ðRÞ is related to the usual K-theory of R and RD. Regarding the former, there

is a homomorphism Kdiff
0 ðRÞ ! K0ðRÞ which, by Theorem 2, is surjective. An element

½M��½PðAÞ� of Kdiff
0 ðRÞ lies in the kernel provided that, as R modules, M and P(A) are stably iso-

morphic, which means that M is stably free, say M�RðmÞ ffi RðnÞ: In Kdiff
0 ðRÞ; ½M��½PðAÞ� ¼

½M�RðmÞ��½PðAÞ�RðmÞ�: Thus every element of the kernel has the form ½PðCÞ��½PðDÞ� where C
and D are matrices of the same size. Conversely, every such matrix pair yields an element of the
kernel. If C and D are matrices of the same size over R and both P(C) and P(D) have bases of
constants then they are isomorphic and ½PðCÞ��½PðDÞ� ¼ 0 in Kdiff

0 ðRÞ: If we extend scalars to
S ¼ SðCÞ�RSðDÞ then the extensions of P(C) and P(D) will have bases of constants. If we do this
for all pairs of matrices, then for all pairs ½PðCÞ��½PðDÞ� ¼ 0 and hence the kernel of the homo-
morphism from the differential K group to the ordinary K group is trivial.

Explicitly:

Proposition 3. Let S1ðRÞ be the infinite tensor product of the algebras S(A) as A ranges over all the
matrices, of all sizes, with entries in R. S1ðRÞ is a faithfully flat augmented R algebra, and the
image of

Kdiff
0 Rð Þ ! Kdiff

0 S1 Rð Þð Þ
is isomorphic to K0ðRÞ:
Proof. If C and D are matrices of the same size over R then, as we have noted, ½PðCÞ��½PðDÞ� has
image zero under Kdiff

0 ðRÞ ! Kdiff
0 ðS1ðRÞÞ: Thus the kernel of Kdiff

0 ðRÞ ! K0ðRÞ is contained in
that of Kdiff

0 ðRÞ ! Kdiff
0 ðS1ðRÞ: It is clear that S1ðRÞ is augmented and faithfully flat. The augmen-

tation induces a homomorphism K0ðS1ðRÞÞ ! K0ðRÞ: If we precede this by the maps Kdiff
0 ðRÞ !

Kdiff
0 ðS1ðRÞÞ and Kdiff

0 ðS1ðRÞÞ ! K0ðS1ðRÞÞ the composite is Kdiff
0 ðRÞ ! K0ðRÞ which shows that

the kernels coincide, completing the proof. w

We can say that Proposition 3 says that, after extension from R to S1ðRÞ; the differential and
ordinary K theory of R are the same. We can iterate this process:

Corollary 5. Let Siþ1ðRÞ ¼ S1ðSiðRÞÞ; i ¼ 1; 2; 3; :::. Let S1ðRÞ ¼ limSiðRÞ. Then S1ðRÞ is a faith-
fully flat R algebra and

Kdiff
0 S1 Rð Þð Þ ! K0 S1 Rð Þð Þ

is an isomorphism.
Corollary 5 is proven by taking the direct limit of the maps in Proposition 3.
Regarding RD, there is a homomorphism K0ðRDÞ ! Kdiff

0 ðRÞ given by tensoring over RD with
R. By Theorem 1 the image of this homomorphism is given by (differences of) objects which
occur as summands of m½R� for m ¼ 1; 2; 3; :::: Moreover, there may be a kernel, ultimately due
to the fact that a surjective differential homomorphism need not be surjective on constants.
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Applying Theorem 4 then yields the following:

Corollary 6. Let x 2 Kdiff
0 ðRÞ. Then there is a differential R algebra S, faithfully flat, finitely gener-

ated, and augmented as an R algebra such that under Kdiff
0 ðRÞ ! Kdiff

0 ðSÞ the image of x lies in the
image of K0ðSDÞ ! Kdiff

0 ðSÞ:

Proof. Let x ¼ ½M1��½M2� where Mi is a differential finitely generated projective module. Let Si be
the algebra provided for Mi by Theorem 4, and let S ¼ S1 � S2: Then both M1 and M2 are differ-
ential direct summands of direct sums of copies of S and hence induced from SD by
Theorem 1. w

If we apply the proof of Corollary 6 to the case where R is replaced by S1ðRÞ we see that
K0ðS1ðRÞDÞ ! Kdiff

0 ðS1ðRÞÞ is surjective.
The situation for differential projective modules which are rank one as R modules is somewhat

simpler. Differential isomorphism classes of such modules form a multiplicative monoid under
the relation ½I�½J� :¼ ½I � J� with ½R� acting as an identity, If I is a differential rank one projective
module so is EndRðIÞ: Consider the endomorphism Ta of I given by multiplication by a 2 R : by
definition, DðTaÞðxÞ ¼ DðTaðxÞÞ�TaðDðxÞÞ ¼ DðaxÞ�aDðxÞ ¼ DðaÞx: Thus DðTaÞ ¼ TDðaÞ; which
means that R ! EndRðIÞ is a differential map. Since it is an R isomorphism, this shows that
½EndRðIÞ� ¼ ½R�: The usual isomorphism I
 � I ! EndRðIÞ is differential, showing that ½I
�½I� ¼
½R�: This means the isomorphism classes of differential rank one projective R modules form a
group, which we denote PicdiffðRÞ: For the special case I ¼ PðaÞ and J ¼ PðbÞ for a; b 2 R; we
have I � J ffi Pðaþ bÞ; so that a 7! ½PðaÞ� is a group homomorphism from the additive group of
R, which we denote Rþ, to PicdiffðRÞ:

There is a homomorphism Picdiff ðRÞ ! PicðRÞ sending ½I� to the isomorphism class of I. This
is surjective by Theorem 2. The kernel, which we denote Pic0diffðRÞ; consists of I’s which are free
as R modules, namely those of the form P(a) for a 2 R; in other words R with derivation
DaðrÞ ¼ r0 þ ar: The image of Rþ ! PicdiffðRÞ is thus Pic0diffðRÞ: Thus Picdiff ðRÞ is an extension
of PicðRÞ by the image of Rþ, as the following theorem records.

Theorem 5. There is an exact sequence

0 ! Rþ=dlog R�ð Þ ffi Pic0diff Rð Þ ! Picdiff Rð Þ ! Pic Rð Þ ! 1

Proof. The only assertion that needs proof is the isomorphism Rþ=dlogðR�Þ ffi Pic0diffðRÞ: We
already know that Rþ ! Pic0diff ðRÞ by a 7! ½PðaÞ� is surjective. By Corollary 1. ½PðaÞ� ¼ ½PðbÞ� are
isomorphic differential modules if and only if there is a unit u 2 R such that a�b ¼ dlogðuÞ;
which shows that the kernel of the surjection is dlogðR�Þ: w

5. Examples

This section collects some examples illustrating some extreme cases of differential rings. We
intend to pursue investigations of K-theory calculations in future work.

Example 1. Let R ¼ C with D¼ 0.
In this case all finitely generated R modules are projective, indeed free, and for a differential R

module M DM is R linear. Thus differential finitely generated projective R modules are finite
dimensional vector spaces with designated endomorphisms. The structure, classification, and K-
theory of these modules is thus the same as that of complex matrices under conjugation.

Example 2. Let R ¼ OðCÞ (the ring of entire functions on the complex plane in the variable z)
with D ¼ d

dz :
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It is a consequence of Weierstrass Theory (see [7, Chapter 1]) that finitely generated ideals of
R are principal. Suppose f is an entire function and that the principal ideal Rf is a differential
ideal. Suppose that f ðaÞ ¼ 0 for some a 2 C; and suppose the order of the zero of f at a is n> 0.
Then f 0 has a zero at a of order n – 1. But since Rf is a differential ideal, f is a factor of f 0; so
that f 0 has a zero at a of order at least n. We conclude that f has no zeros, and hence is a unit,
so that Rf ¼ R is the only finitely generated differential ideal of R.

On the other hand, R has proper differential ideals: again by Weierstrass Theory, there is an
entire function g which has a zero at n of order n for every natural number n 2 N: This means
that for any m the functions gðiÞ; i ¼ 0; 1; :::;m have infinitely many common zeros at mþ 1;mþ
2; ::: and so the ideal of R generated by g; g0; :::; gðmÞ does not contain 1. It follows that the differ-
ential ideal I of R generated by g is proper. We note that the differential R module R/I is finitely
generated as an R module, but not projective as an R module, since R is an integral domain, and
hence its only idempotents are 0 and 1, so the surjection R ! R=I can’t split. This is thus an
example of a non-projective differential finitely generated module over a differential ring that has
no non-trivial finitely generated differential ideals.

Because finitely generated ideals of R are principal, finitely generated projective R modules are
free. This means that the differential R modules which are finitely generated and projective as R
modules are R free, so have the form P(A) for a suitable matrix A over R. [Monic, homogeneous]
linear differential equations with entire coefficients have an entire solution, which implies that
P(A) has a basis of constants, and hence is a differential direct sum of copies of R.

By Corollary 2, this means that every differential finitely generated projective R module is
induced from RD ¼ C: (Note: this is C as a ring, not as a differential ring as in Example 1.)

Example 3. Let R be the localized polynomial ring C½a; b; c�½h�1� where h ¼ a2b2 þ a2cþ b2c and
D(a) ¼ a, D(b) ¼ b, D(c) ¼ c, and DðaÞ ¼ 0 for a 2 C:

Finitely generated projective R modules are free, so all of the form P(A) for some A. Let A be
the 2� 2 complex matrix �I2; and consider the differential R module M ¼ PðAÞ; which is free of
rank 2 as an R module. We will see that M is constantly generated but not induced.

For x 2 M;DMðxÞ ¼ x0 þ xA: Then DMðða; 0ÞÞ ¼ ð0; 0Þ;DMðð0; bÞÞ ¼ ð0; 0Þ; and DMððc; cÞÞ ¼
ð0; 0Þ; so ða; 0Þ; ð0; bÞ; and (c, c) are constants. Moreover, aða; 0Þ þ ðc; cÞ ¼ ða2 þ c; cÞ and
bð0; bÞ þ ðc; cÞ ¼ ðc; b2 þ cÞ are the rows of a 2� 2 matrix whose determinant h is a unit of R,
and hence they form a basis of M. Thus the constants ða; 0Þ; ð0; bÞ; and (c, c) span M.

In other words, T : Rð3Þ ! M by ðx; y; xÞ 7! xða; 0Þ þ yð0; bÞ þ zðc; cÞ ¼ ðxaþ zc; ybþ zcÞ is a
differential surjection. The matrix of T is

a 0 c
0 b c

� �
:

It is easy to calculate a right R module inverse to T:

a 0 c
0 b c

� �
�

a 0
0 b
1 1

2
4

3
5 ¼ a2 þ c c

c b2 þ c

� �
¼ C

and detðCÞ ¼ h (unit of R). If T had a differential right inverse, then M would be a differential
direct summand of Rð3Þ and hence, by Theorem 1, induced. We see that this is not the case.

Suppose ðx; yÞ 2 M is a constant. Then ð0; 0Þ ¼ DMððx; yÞÞ ¼ ðx0�x; y0�yÞ so D(x) ¼ x and
D(y) ¼ y. Now suppose (x, y) and (z, w) are an R basis of M consisting of constants. The deter-
minant of the matrix with rows (x, y) and (z, w) is g ¼ xw�yz and DðgÞ ¼ 2g: Moreover, g is a
unit. Now R is the localization of a unique factorization domain at an irreducible polynomial, so
its only units are complex multiples of powers of h. So suppose g ¼ ahk; a 2 C; in the polynomial
ring. Then 2ahk ¼ 2g ¼ DðgÞ ¼ akhk�1DðhÞ: Therefore DðhÞ ¼ 2k�1h is a constant multiple of h.
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Moreover DðgÞ ¼ 2g implies that g 62 RD; since g is a unit, and therefore k 6¼ 0: But DðhÞ ¼
4a2b2 þ 3b2cþ 3a2c is not a polynomial multiple of h. Thus we conclude that M does not have a
basis of constants, despite the fact that it is constantly generated. We now show that this implies
M is not induced by showing that RD ¼ C: Consider an element of R with derivative zero. We
can write this as a fraction p

q where p and q are relatively prime polynomials and q is a power of
h. Since p

q is a constant, qDðpÞ�pDðqÞ ¼ 0: If q 6¼ 1 this implies that q is a factor of D(q) in the
polynomial ring C½a; b; c�: Since q ¼ hk for some k> 0, we have hk as a factor of khk�1DðhÞ in
C½a; b; c� so that h is a factor of D(h) in C½a; b; c�; as noted, this is not possible. Thus q¼ 1 and
D(p) ¼ 0. Write p ¼ Pn

i¼0 pi; where pi is the term in p of total degree i. Then DðpÞ ¼ Pn ipi so
D(p) ¼ 0 implies that p ¼ p0 2 C:

Example 4. Let F be a differential field whose field of constants C is algebraically closed of char-
acteristic zero and let E � F be a Picard–Vessiot extension with differential Galois group G ¼
PGLnðCÞ; n> 1. Let R be the Picard–Vessiot ring of the extension, and assume that as a ring R ¼
F�CC½PGLn�: (Such examples are known and easy to construct since we have no constraint
on F).

Since PicðC½PGLn�Þ ¼ Z=nZ we conclude that PicðRÞ contains Z=nZ and in particular is non–-
zero. Let I � C½PGLn� be a (projective) ideal generating PicðC½PGLn�Þ and let J ¼ F � I be the
corresponding rank one projective ideal of R. By Theorem 2 J carries a differential structure,
although not as a differential ideal of R (R is differentially simple). Moreover, since R is differen-
tially simple, the cyclic R submodule generated by a constant in any differential module is a dif-
ferential direct summand. Thus J, as a differential module, can’t contain any constants.

The units of C½PGLn� are elements of C (in general the units of C½G� are constants times char-
acters of G) from which it follows that the units of R are non-zero elements of F, so that
dlogðR�Þ ¼ dlogðF�Þ: Thus R=dlogðR�Þ contains the countable dimensional F vector space
spanned by the augmentation ideal of R, and hence Pic0diffðRÞ is highly infinite.

ORCID

Lourdes Juan http://orcid.org/0000-0002-4208-7330

References

[1] Andr�e, Y. (2014). Solution algebras of differential equations and quasi–homogeneous varieties. Ann. Sci.
�Ecole Norm. Sup. 47(2):449–467. DOI: 10.24033/asens.2218.

[2] Bass, H. (1968). Algebraic K Theory. New York: W. A. Benjamin.
[3] Bass, H., Roy, A. (1967). Lectures on Topics in Algebraic K-Theory. Notes by Amit Roy. Tata Institute of

Fundamental Research Lectures on Mathematics, Vol. 41., Bombay: Tata Institute of Fundamental
Research.

[4] Bass, H. (1963). Big projective modules are free. Illinois J. Math. 7:24–31.
[5] Bertrand, D. (1996). Review of lectures on differential Galois theory, Bulletin (new series). Bull. Am. Math.

Soc. 33(02):289–294.
[6] Juan, L., Magid, A. (2008). Differential central simple algebras and Picard–Vessiot representations. Proc.

Am. Math. Soc. 136(06):1911–1918. DOI: 10.1090/S0002-9939-08-09165-X.
[7] Knopp, K. (1947). Theory of Functions Part II. New York: Dover.
[8] Magid, A. (1994). Lectures on differential Galois Theory. University Lecture Series 7. Providence: American

Mathematical Society.
[9] Magid, A. (2016). Differential �etale extensions and differential modules over differential rings. Adv. Appl.

Math. 72: 195–214. DOI: 10.1016/j.aam.2015.09.006.
[10] Singer, M., van der Put, M. (2003). Differential Galois Theory. New York: Springer.

COMMUNICATIONS IN ALGEBRAVR 11

https://doi.org/10.24033/asens.2218
https://doi.org/10.1090/S0002-9939-08-09165-X
https://doi.org/10.1016/j.aam.2015.09.006

	Abstract
	Introduction
	Basics
	All projectives are differential
	K–theory
	Examples
	References


